Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(42): 9521-9530, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37851938

RESUMO

The geometry and surface state of nanocrystals (NCs) strongly affect their physiochemical properties, self-assembly behaviors, and potential applications, but there is still a lack of a facile method to regulate the exposed facets of the NCs, especially metal@semiconductor core-shell NCs. Herein, we present a reproducible approach for tuning the morphology of PbS NCs from nanocubes to nano-octahedrons by introducing lead halides as precursors. Excitingly, the method can be easily extended to the synthesis of metal@PbS core-shell NCs with single-crystalline shells and specific exposed facets. In addition, the halide passivation layers on the NCs are found to greatly improve their antioxidant ability. Therefore, the Cl-passivated NCs can self-assemble into atomic-coupled monolayer films via oriented attachment under ambient conditions, which exhibit enhanced electrical conductivities compared with uncoupled counterparts. The precise synthesis of nanocrystals with tunable shapes and the construction of self-assembled films provide a way to expand their application in high-performance optoelectronic devices.

2.
Chem Sci ; 14(37): 10167-10175, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772115

RESUMO

Branched metal chalcogenide nanostructures with well-defined composition and configuration are appealing photocatalysts for solar-driven organic transformations. However, precise design and controlled synthesis of such nanostructures still remain a great challenge. Herein, we report the construction of a variety of highly symmetrical metal sulfides and heterostructured icosapods based on them, in which twenty branches were radially grown in spatially ordered arrangement, with a high degree of structure homogeneity. Impressively, the as-obtained CdS-PdxS icosapods manifest a significantly improved photocatalytic activity for the selective oxidation of biomass-relevant alcohols into corresponding aldehydes coupled with H2 evolution under visible-light irradiation (>420 nm), and the apparent quantum yield of the benzyl alcohol reforming can be achieved as high as 31.4% at 420 nm. The photoreforming process over the CdS-PdxS icosapods is found to be directly triggered by the photogenerated electrons and holes without participation of radicals. The enhanced photocatalytic performance is attributed to the fast charge separation and abundant active sites originating from the well-defined configuration and spatial organization of the components in the branched heterostructures.

3.
Nat Commun ; 14(1): 2538, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137913

RESUMO

Epitaxial growth is one of the most commonly used strategies to precisely tailor heterostructures with well-defined compositions, morphologies, crystal phases, and interfaces for various applications. However, as epitaxial growth requires a small interfacial lattice mismatch between the components, it remains a challenge for the epitaxial synthesis of heterostructures constructed by materials with large lattice mismatch and/or different chemical bonding, especially the noble metal-semiconductor heterostructures. Here, we develop a noble metal-seeded epitaxial growth strategy to prepare highly symmetrical noble metal-semiconductor branched heterostructures with desired spatial configurations, i.e., twenty CdS (or CdSe) nanorods epitaxially grown on twenty exposed (111) facets of Ag icosahedral nanocrystal, albeit a large lattice mismatch (more than 40%). Importantly, a high quantum yield (QY) of plasmon-induced hot-electron transferred from Ag to CdS was observed in epitaxial Ag-CdS icosapods (18.1%). This work demonstrates that epitaxial growth can be achieved in heterostructures composed of materials with large lattice mismatches. The constructed epitaxial noble metal-semiconductor interfaces could be an ideal platform for investigating the role of interfaces in various physicochemical processes.

4.
Nat Commun ; 13(1): 3330, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680880

RESUMO

Sensitive detection of local acoustic vibrations at the nanometer scale has promising potential applications involving miniaturized devices in many areas, such as geological exploration, military reconnaissance, and ultrasound imaging. However, sensitive detection of weak acoustic signals with high spatial resolution at room temperature has become a major challenge. Here, we report a nanometer-scale system for acoustic detection with a single molecule as a probe based on minute variations of its distance to the surface of a plasmonic gold nanorod. This system can extract the frequency and amplitude of acoustic vibrations with experimental and theoretical sensitivities of 10 pm Hz-1/2 and 10 fm Hz-1/2, respectively. This approach provides a strategy for the optical detection of acoustic waves based on molecular spectroscopy without electromagnetic interference. Moreover, such a small nano-acoustic detector with 40-nm size can be employed to monitor acoustic vibrations or read out the quantum states of nanomechanical devices.


Assuntos
Ressonância de Plasmônio de Superfície , Vibração , Acústica , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Temperatura
5.
J Phys Chem Lett ; 13(10): 2371-2378, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35254074

RESUMO

Nonblinking colloidal quantum dots (QDs) are significant to their applications as single-photon sources or light-emitting materials. Herein, a simple heat-up method was developed to synthesize high-qualityWZ-CdSe/CdS core-shell colloidal QDs, which achieved a near-unity photoluminescence quantum yield (PLQY). It was found that the blinking behavior of such QDs was completely suppressed at high excitation intensities, and ultra-stable PL emission was observed. For this reason, a systematic investigation was conducted, revealing that the complete blinking suppression was attributed mainly to the efficient multiexciton emission at high excitation intensities. Such high-quality QDs with nonblinking behaviors and nearly ideal PL properties at high excitation intensities have massive potential applications in various robust conditions, including QD display screens, single-particle tracks, and single-photon sources.

6.
Angew Chem Int Ed Engl ; 60(7): 3475-3480, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33150718

RESUMO

One-dimensional (1D) hyperbranched heterostructures (HBHSs) with abundant interfaces are rendered with various interfacial phenomena and functionalities. However, the rational synthesis of 1D HBHSs with desired spatial architecture and specific interface remains a great challenge. Here, we report a seeded growth method for controlled synthesis of two extraordinary types of HBHSs, in which high-intensity of CdS branches selectively grow on 1D nanowire (NW) trunks with different growth behaviors. The composition of the HBHSs can be further tuned by combining with cation exchange method, which enriches the variety of the HBHSs. The optoelectronic devices based on a single HBHS were fabricated and exhibit a better photoresponse performance compared with that of a single NW trunk. This advance provides a strategy for the controlled synthesis HBHSs with complex morphology and offers a platform for exploring their applications for photo harvesting and conversion.

7.
ACS Appl Mater Interfaces ; 12(31): 35266-35272, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32640789

RESUMO

Luminescent metal-organic frameworks (LMOFs) that can effectively differentiate cis/trans isomers are rarely reported. Herein, we report a novel non-interpenetrated pillared-layered LMOF [Zn(HIPA)(BPyTPE)] (1) (BPyTPE = (E)-1,2-diphenyl-1,2-bis(4-(pyridin-4-yl)phenyl)ethene; HIPA = (5-hydroxyisophthalic acid)) with a high fluorescence quantum yield of 90.1%. The activated 1 exhibits high thermal stability and strong fluorescence in a methanol suspension. The fluorescence of activated 1 can be much more efficiently quenched by trans-dimethyl-2-butenedioate and trans-2-butene-1,4-diol than cis-dimethyl-2-butenedioate and cis-2-butene-1,4-diol, which enables it to differentiate these cis/trans isomers. This interesting LMOF could be a new type of fluorescence sensor to effectively detect cis/trans isomers.

8.
Chem Commun (Camb) ; 53(72): 9975-9978, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28831463

RESUMO

A novel pillared-layered entangled luminescent metal-organic framework [Zn2(bpdc)2(BPyTPE)] (1) (BPyTPE = (E)-1,2-diphenyl-1,2-bis(4-(pyridin-4-yl)phenyl)ethene) has been designed and constructed. The solvent-free 1 exhibits strong blue-green emission with an excellent fluorescence quantum yield of 99% and provides a facile and reversible method to sensitively and quantitatively detect trace pesticide of 2,6-dichloro-4-nitroaniline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...